

Lösungen zu Übungszettel 1 — Aussagenlogik

1. Gegeben seien die Aussagen B, R, T.

B := "'Das Buch ist ein Bestseller."'

R := "'Das Buch ist ein Roman."'

T := "'Das Buch ist teurer als $20 \in$."'

- (a) Überführen Sie folgende Aussagen in Aussagenlogik:
 - i. "'Das Buch ist ein Bestseller und nicht teurer als 20 €."' $B \wedge \neg T$
 - ii. "'Das Buch ist ein Bestseller, aber es ist teurer als 20 €."' $B \wedge T$
- (b) Verbalisieren Sie die folgenden Aussagenverknüpfungen:
 - i. $T \vee \neg B$

"'Das Buch ist teurer als 20 €oder das Buch ist kein Bestseller."'

ii. $B \Rightarrow \neg R$

"'Wenn das Buch ein Bestseller ist, dann ist es kein Roman."'

- 2. Beweise mit Wahrheitstafeln:
 - (a) Beweisen Sie die Gültigkeit der Absorptions-Regel $A \vee (A \wedge B) \equiv A$.

A	B	$A \wedge B$	$A \lor (A \land B)$	$A \lor (A \land B) \Leftrightarrow A$
0	0	0	0	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

(b) Zeigen Sie, dass $\neg (A \land B) \equiv \neg A \land \neg B$ falsch ist.

A	B	$A \wedge B$	$\neg (A \land B)$	A	B	$\neg A$	$\neg B$	$\neg A \land \neg B$
0	0	0	1	0	0	1	1	1
0	1	0	1	0	1	1	0	0
1	0	0	1	1	0	0	1	0
1	1	1	0	1	1	0	0	0

(c) Ist $(A \Rightarrow (B \Rightarrow C)) \Leftrightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ ein Widerspruch? Ist die Aussage eine Tautologie?

Es handelt sich nicht um einen Widerspruch sondern um eine Tautologie:

A	B	C	$B \Rightarrow C =: D$	$A \Rightarrow D =: E$	$A \Rightarrow B =: F$	$A \Rightarrow C =: G$	$F \Rightarrow G =: H$	$E \Leftrightarrow H$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1	1
1	0	1	1	1	0	1	1	1
1	1	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1

3. Beweisen Sie durch Umformen: $(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$ Beweis der Kontraposition:

$$\begin{array}{ll} A \Rightarrow B & | \text{Implikationselimination} \\ \equiv \neg A \lor B & | \text{Kommutativgesetz} \\ \equiv B \lor \neg A & | \text{Doppelnegation} \\ \equiv \neg \neg B \lor \neg A & | \text{Implikationsumformung} \\ \equiv \neg B \rightarrow \neg A & | \end{array}$$

4. Beweisen Sie durch Umformen oder mit Wahrheitstafeln: $(A \Rightarrow B) \equiv \neg (A \land \neg B)$

A	B	$A \Rightarrow B$	$\neg B$	$A \wedge \neg B$	$\neg (A \land \neg B)$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	1	1	0	0	1

5. Beweisen Sie durch Umformen: $(A \Leftrightarrow B) \equiv \neg (A \land \neg B) \land (B \Rightarrow (A \land (A \lor B)))$